
testcode Documentation
Release 2.0 (alpha)

James Spencer

May 27, 2012





CONTENTS

i



ii



testcode Documentation, Release 2.0 (alpha)

testcode is a python module for testing for regression errors in numerical (principally scientific) software. Essentially
testcode runs a set of calculations, and compares the output data to that generated by a previous calculation (which
is regarded to be “correct”). It is designed to be lightweight and highly portable: it can be used both as part of the
development process and to verify the correctness of a binary on a new architecture. testcode requires python 2.4-
3.2. If these are not available, then pypy is recommended—for this purpose pypy serves as a portable, self-contained
python implementation but this is a tiny aspect of the pypy project.

testcode can run a set of tests and check the calculated data is within a the desired tolerance of results contained in
previous output (using an internal data extraction engine, a user-supplied data extraction program or a user-supplied
verification program). The programs to be tested can be run in serial and in parallel and tests can be run in either
locally or submitted to a compute cluster running a queueing system such as PBS. Previous tests can be compared and
diffed against other tests or benchmarks.

testcode provides access to these features via an API. The supplied command-line interface, testcode.py, should be
sufficient for most purposes. The command-line interface utilises simple configuration files, wich makes it easy to
customise to the local environment and to add new tests.

CONTENTS 1

http://www.pypy.org


testcode Documentation, Release 2.0 (alpha)

2 CONTENTS



CHAPTER

ONE

INSTALLATION

testcode2 is designed to be very lightweight and portable, so it can easily and quickly be used on a variety of machines.
Typically only downloading the testcode2 package is required.

If the testcode.py script is used, then no additional installation steps are required assuming the directory structure is
preserved. If the testcode2 module is used or the files are split up and installed elsewhere, then the testcode2
module must be able to be found by python (i.e. exists on $PYTHONPATH).

3



testcode Documentation, Release 2.0 (alpha)

4 Chapter 1. Installation



CHAPTER

TWO

CONFIGURATION FILES

For convenience, tests can be specified via configuration files rather than using the testcode API directly. These
configuration files are required for work with the command-line interface.

The two configuration files are, by default, jobconfig and userconfig in the working directory. Different names and/or
paths can be specified if required.

Both configuration files take options in the ini format (as understood by Python’s configparser module). For example:

[section_1]
a = 2
b = test_option

[section_2]
v = 4.5
hello = world

defines an ini file with two sections (named ‘section_1’ and ‘section_2’), each with two variables set.

5

http://docs.python.org/library/configparser.html


testcode Documentation, Release 2.0 (alpha)

6 Chapter 2. Configuration files



CHAPTER

THREE

JOBCONFIG

The jobconfig file defines the tests to run. If a section named ‘categories’ exists, then it gives labels to sets of tests. All
other sections are assumed to individually define a test.

3.1 Tests

A test is assumed to reside in the directory given by the name of the test section. For example:

[carbon_dioxide_ccsd]
inputs_args = (’co2.inp’,’’)

would define a test in the carbon_dioxide_ccsd subdirectory relative to the jobconfig configuration file,
with the input file as co2.inp (in the carbon_dioxide_ccsd subdirectory) with no additional arguments to be
passed to the test program. All input and output files related to the test are assumed to be contained within the test
subdirectory.

The following options are permitted:

inputs_args [inputs and arguments format (see below)] Input filename and associated arguments to be passed to
the test program. No default.

nprocs [integer] Number of processors to run the test on. Zero indicates to run the test purely in serial, without using
an external program such as mpirun to launch the test program. Default: 0.

output [string] Filename to which the output is written if the output is not written to standard output. The output file
is moved to the specific testcode test filename at the end of the calculation before the test output is validated
against the benchmark output. Wildcards are allowed so long as the pattern only matches a single file at the end
of the calculation. Default: inherits from setting in userconfig.

override_nprocs [boolean] True if the number of processors to run the test cannot be overidden by command-line
options to testcode.py. Useful to force certain tests to be executed on a given number of processors. Default:
false.

test_program [string] Program name (appropriate section heading in userconfig) to use to run the test. Default:
specified in the [user] section of userconfig.

tolerance [tolerance format (see Tolerance format)] Tolerances for comparing test output to the benchmark output.
Default: inherits from the settings in userconfig.

7



testcode Documentation, Release 2.0 (alpha)

3.2 Test categories

Each test is automatically defined to reside in a category of the same name. Additional categories can be specified in
the [categories] section. This makes it very easy to select subsets of the tests to run. For example:

[categories]
cat1 = t1 t2
cat2 = t3 t4
cat3 = cat1 t3

defines three categories (cat, cat2 and cat3), each containing a subset of the overall tests. A category may contain
another category so long as circular dependencies are avoided. There are two special categories, _all_ and _default_.
The _all_ category contains, by default, all tests and should not be changed under any circumstances. The _default_
category can be set; if it is not specified then it is set to be the _all_ category.

3.3 Program inputs and arguments

The inputs and arguments must be given in a specific format. As with the tolerance format, the inputs and arguments
are specified using a comma-separated list of python tuples. Each tuple (basically a comma-separated list enclosed in
parantheses) contains two elements: the name of an input file and the associated arguments, in that order, represents
a test. Both elements must be quoted. If the input filename contains wildcard, then those wildcards are expanded to
find all files in the test subdirectory which match that pattern. A separate test (with the same arguments string) is then
created for each file matching the pattern. used to construct the command to run A null string (”) should be used to
represent the absence of an input file or arguments. Tests within the same subdirectory are run in the order they are
specified. For example:

inputs_args = (’test.inp’, ’’)

defines a single test, with input filename test.inp and no arguments,

inputs_args = (’test.inp’, ’’), (’test2.inp’, ’--verbose’)

defines two tests, with an additional argument for the second test, and

inputs_args = (’test*.inp’, ’’)

defines a test for each file matching the pattern test*inp in the test subdirectory.

8 Chapter 3. jobconfig



CHAPTER

FOUR

USERCONFIG

The userconfig file must contain at least two sections. One section must be entitled ‘user’ and contains various user
settings. Any other section is assumed to define a program to be tested, where the program is referred to internally
by its section name. This makes it possible for a set of tests to cover multiple, heavily intertwined, programs. It is,
however, far better to have a distinct set of tests for each program where possible.

4.1 [user] section

The following options are allowed in the [user] section:

benchmark [string] Specify the ID of the benchmark to compare to. This should be set running

The format of the benchmark files is’benchmark.out.ID.inp=INPUT_FILE.arg=ARGS’. The ‘inp’ and/or ‘arg’
section is not included if it is empty.

date_fmt [string] Format of the date string used to uniquely label test outputs. This must be a valid date format string
(see Python documenation). Default: %d%m%Y.

default_program [string] Default program used to run each test. Only needs to be set if multiple program sections
are specified. No default.

diff [string] Program used to diff test and benchmark outputs. Default: diff.

tolerance [tolerance format (see below.)] Default tolerance(s) used to compare all tests to their respective bench-
marks. Default: absolute tolerance 10^-10; no relative tolerance set.

4.2 [program_name] section(s)

The following options are allowed to specify a program (called ‘program_name’) to be tested:

data_tag [string] Data tag to be used to extract data from test and benchmark output. No default.

ignore_fields [space-separated list of strings] Specify the fields (e.g. column headings in the output from the extrac-
tion program) to ignore. This can be used to include, say, timing information in the test output for performance
comparison without causing failure of tests. No default.

exe [string] Path to the program executable. No default.

extract_args [string] Arguments to supply to the extraction program. Default: null string.

extract_cmd_template [string] Template of command used to extract data from output(s) with the following substi-
tutions made:

tc.extract replaced with the extraction program.

9



testcode Documentation, Release 2.0 (alpha)

tc.args replaced with extract_args.

tc.file replaced with (as required) the filename of the test output or the filename of the benchmark
output.

tc.bench replaced with the filename of the benchmark output.

tc.test replaced with the filename of the test output.

Default: tc.extract tc.args tc.file if verify is False and tc.extract tc.args tc.test tc.bench if verify is True.

extract_program [string] Path to program to use to extract data from test and benchmark output. No default.

launch_parallel [string] Command used to run the test program in parallel. Default: mpirun.

run_cmd_template [string] Template of command used to run the program on the test with the following substitu-
tions made:

tc.program replaced with the program to be tested.

tc.args replaced with the arguments of the test.

tc.input replaced with the input filename of the test.

tc.output replaced with the filename for the standard output. The filename is selected at runtime.

tc.error replaced with the filename for the error output. The filename is selected at runtime.

Default: ‘tc.program tc.args tc.input > tc.output 2> tc.error’ in serial and ‘launch_command -np nprocs
tc.program tc.args tc.input > tc.output 2> tc.error’ in parallel, where launch_command is specified above and
nprocs is the number of processors to run the test on. The parallel version is only used if the number of proces-
sors to run a test on is greater than zero.

submit_pattern [string] String in the submit to be replaced by the run command. Default: testcode.run_cmd.

submit_template [string] Path to a template of a submit script used to submit jobs to a queueing system. testcode
will replace the string given in submit_pattern with the command(s) to run the test. The submit script must do
all other actions (e.g. setting environment variables, loading modules, copying files from the test directory to a
local disk and copying files back afterwards). No default.

tolerance [tolerance format (see below.)] Default tolerance for tests of this type. Default: inherits from [user].

verify [boolean] True if the extraction program compares the benchmark and test outputs directly. See verification
for more details. Default: False.

vcs [string] Version control system used for the source code. This is used to label the benchmarks. The program
binary is assumed to be in the same directory tree as the source code. Supported values are: hg, git and svn and
None. If vcs is set to None, then the version id of the program is requested interactively when benchmarks are
produced. Default: None.

Most settings are optional and need only be set if certain functionality is required or the default is not appropriate.
Note that either data_tag or extract_program must be supplied.

In addition, the following variables are used, if present, as default settings for all tests of this type:

• inputs_args (no default)

• nprocs (default: 0)

• output (no default)

See jobconfig for more details.

All other settings are assumed to be paths to other versions of the program (e.g. a stable version). Using one of these
versions instead of the one listed under the ‘exe’ variable can be selected by an option to testcode.py.

10 Chapter 4. userconfig



testcode Documentation, Release 2.0 (alpha)

4.3 Tolerance format

The format for the tolerance for the data is very specific. Individual tolerance elements are specified in a comma-
separated list. Each individual tolerance element is a python tuple (essentially a comma-separated list enclosed in
parentheses) consisting of, in order, the absolute tolerance, the relative tolerance and the label of the field to which the
tolerances apply. The labels must be quoted. If no label is supplied then the setting is taken to be the default tolerance
to be applied to all data. For example, the setting:

(1e-8, 1.e-6), (1.e-4, 1.e-4, ’Force’)

uses an absolute tolerance of 10^-8 and a relative tolerance of 10^-6 by default and an absolte tolerance and a relative
tolerance of 10^-4 for data items labelled with ‘Force’ (i.e. in columns headed by ‘Force’ using an external data
extraction program or labelled ‘Force’ by the internal data extraction program using data tags).

4.3. Tolerance format 11



testcode Documentation, Release 2.0 (alpha)

12 Chapter 4. userconfig



CHAPTER

FIVE

TEST VERIFICATION

testcode compares selected data from an output with previously obtained output (the ‘benchmark’); a test passes if all
data is within a desired tolerance. The data can be compared using an absolute tolerance and/or a relative tolerance.
testcode needs some way of knowing what data from the output files should be validated. There are three options.

• label output with a ‘data tag’

If a data tag is supplied, then testcode will search each output file for lines starting with that tag. The first
numerical entry on those lines will then be checked against the benchmark. For example, if the data tag is set to
be ‘[QA]’, and the line

[QA] Energy = 1.23456 eV

appears in the test output, then testcode will ensure the value 1.23456 is identical (within the specified tolerance)
to the equivalent line in the benchmark output. The text preceding the value is used to label that data item; lines
with identical text but different values are handled but it is assumed that such lines always come in the same
(relative) order.

• user-supplied data extraction program

An external program can be used to extract data from the test and benchmark output; the program must print
the data to be compared in an output file in a tabular format to standard output. A row of text is assumed to
start a table. Multiple tables are permitted, but each table must be square (i.e. no gaps and the same number of
elements on each row) and hence each column heading must contain no spaces. For example, a single table is
of the format:

val_1 val_2 val3
1.2 2 3.32
8.7 4 17.2

and a table containing multiple subtables:

val_1 val_2 val3
1.2 2 3.32
8.7 4 17.2

val_4 val_5
11.22 221.0

Tables need not be beautifully presented: the amount of whitespace between
each table cell is not important, so long as there’s at least one space
separating adjacent cells.

Column headings are used to label the data in the subsequent rows. These
labels can be used to specify different tolerances for different types of
data.

13



testcode Documentation, Release 2.0 (alpha)

Non-numerical values in a table are required to be equal (within python’s
definition of equality for a given object).

• user-supplied verification program

An external program can be used to validate the test output; the program must set an exit status of 0 to indicate
the test passed and a non-zero value to indicate failure.

14 Chapter 5. Test verification



CHAPTER

SIX

TESTCODE.PY

6.1 Synopsis

testcode.py [options] [action1 [action2...]]

6.2 Description

Run a set of actions on a set of tests.

Requires two configuration files, jobconfig and userconfig. See testcode documentation for further details.

testcode.py provides a command-line interface to testcode, a simple framework for comparing output from (principally
numeric) programs to previous output to reveal regression errors or miscompilation.

6.3 Actions

‘’run” is th default action.

compare compare set of test outputs from a previous testcode run against the benchmark outputs.

compare diff set of test outputs from a previous testcode run against the benchmark outputs.

make-benchmarks create a new set of benchmarks and update the userconfig file with the new benchmark id. Also
runs the ‘run’ action unless the ‘compare’ action is also given.

run run a set of tests and compare against the benchmark outputs.

tidy Remove files from previous testcode runs from the test directories.

6.4 Options

-h, --help show this help message and exit

-b BENCHMARK, --benchmark=BENCHMARK Set the file ID of the benchmark files. If
BENCHMARK is in the format t:ID, then the test files with the corresponding
ID are used. This allows two sets of tests to be compared. Default: specified in
the [user] section of the userconfig file.

15



testcode Documentation, Release 2.0 (alpha)

-c CATEGORY, --category=CATEGORY Select the category/group of tests. Can be specified mul-
tiple times. Default: use the _default_ category if run is an action unless make-
benchmarks is an action. All other cases use the _all_ category by default. The
_default_ category contains all tests unless otherwise set in the jobconfig file.

-e EXECUTABLE, --executable=EXECUTABLE Set the executable(s) to be used to run the tests.
Can be a path or name of an option in the userconfig file, in which case all test
programs are set to use that value, or in the format program_name=value, which
affects only the specified program. Only relevant to the run action. Default: exe
variable set for each program listed in the userconfig file.

--jobconfig=JOBCONFIG Set path to the job configuration file. Default: jobconfig.

--job-option=JOB_OPTION Override/add setting to jobconfig. Takes three arguments. Format: sec-
tion_name option_name value. Default: none.

-n NTHREADS, --nthreads=NTHREADS Set the number of tests to run concurrently. Only relevant
to the run action. Default: 1.

--older-than=OLDER_THAN Set the age (in days) of files to remove. Only relevant to the tidy action.
Default: 14 days.

-p NPROCS, --processors=NPROCS Set the number of processors to run each test on. Only relevant
to the run action. Default: run tests as serial jobs.

-q, --quiet Print only minimal output. Default: False.

-s QUEUE_SYSTEM, --submit=QUEUE_SYSTEM Submit tests to a queueing system of the spec-
ified type. Only PBS system is currently implemented. Only relevant to the run
action. Default: none.

-t TEST_ID, --test-id=TEST_ID Set the file ID of the test outputs. If TEST_ID is in the format b:ID,
then the benchmark files with the corresponding ID are used. This allows two
sets of benchmarks to be compared. Default: unique filename based upon date if
running tests and most recent test_id if comparing tests.

--userconfig=USERCONFIG Set path to the user configuration file. Default: userconfig.

--user-option=USER_OPTION Override/add setting to userconfig. Takes three arguments. Format:
section_name option_name value. Default: none.

6.5 License

Modified BSD License. See LICENSE in the source code for more details.

6.6 Bugs

Contact James Spencer (j.spencer@imperial.ac.uk) regarding bug reports, suggestions for improvements or code con-
tributions.

16 Chapter 6. testcode.py

mailto:j.spencer@imperial.ac.uk


CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

17


